kubernetes高可用集群(二进制文件安装)
kubernetes高可用集群(二进制文件安装)
1、准备
1.1、基础架构
采用3 master,3 node模式,使用云厂商提供的load balancer对kube-apiserver进行负载均衡,各个节点之间通过内网进行交互。
1.2、集群网络分配
内网地址范围:10.104.0.0/24
集群service ip range:
内网地址范围:10.104.0.0/24
集群service ip range:
内网地址范围:10.104.0.0/24
集群service ip range: 10.96.0.0/16
pod ip range: 196.16.0.0/16
1.3、下载cfssl证书工具
该工具是cloudflare开源的证书制作工具,后面将用来生成k8s集群中所需的证书。
gayhub地址为 cloudflare/cfssl: CFSSL: Cloudflare’s PKI and TLS toolkit (github.com)
1.4、设置主机名称
设置主机名
#修改域名,一定不是localhost
hostnamectl set-hostname k8s-xxx
vim /etc/hosts
10.104.0.2 k8s-master1
10.104.0.3 k8s-master2
10.104.0.4 k8s-master3
10.104.0.5 k8s-node1
10.104.0.6 k8s-node2
10.104.0.7 k8s-node3
159.89.208.37 k8s-master-lb
1.5、关闭swap
swapoff -a && sysctl -w vm.swappiness=0
sed -ri 's/.*swap.*/#&/' /etc/fstab
1.6、修改limit
ulimit最详解_别打名名的博客-CSDN博客_ulimit 详解
ulimit -SHn 65535
vim /etc/security/limits.conf
# 末尾添加如下内容
* soft nofile 655360
* hard nofile 131072
* soft nproc 655350
* hard nproc 655350
* soft memlock unlimited
* hard memlock unlimited
1.7、安装ipvs等
apt install ipvsadm ipset sysstat conntrack libseccomp-dev -y
# 所有节点配置ipvs模块,执行以下命令,在内核4.19+版本改为nf_conntrack, 4.18下改为nf_conntrack_ipv4
modprobe -- ip_vs
modprobe -- ip_vs_rr
modprobe -- ip_vs_wrr
modprobe -- ip_vs_sh
modprobe -- nf_conntrack
#修改ipvs配置,加入以下内容
vim /etc/modules-load.d/ipvs.conf
# 写入ipvs.conf
ip_vs
ip_vs_lc
ip_vs_wlc
ip_vs_rr
ip_vs_wrr
ip_vs_lblc
ip_vs_lblcr
ip_vs_dh
ip_vs_sh
ip_vs_fo
ip_vs_nq
ip_vs_sed
ip_vs_ftp
ip_vs_sh
nf_conntrack
ip_tables
ip_set
xt_set
ipt_set
ipt_rpfilter
ipt_REJECT
ipip
# 执行命令
# systemctl enable --now systemd-modules-load.service #--now = enable+start
systemctl restart systemd-modules-load.service
#检测是否加载
lsmod | grep -e ip_vs -e nf_conntrack
1.8、转发-ipv4-并让-iptables-看到桥接流量
cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf
overlay
br_netfilter
EOF
sudo modprobe overlay
sudo modprobe br_netfilter
# 设置所需的 sysctl 参数,参数在重新启动后保持不变
cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-iptables = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.ipv4.ip_forward = 1
EOF
# 应用 sysctl 参数而不重新启动
sudo sysctl --system
1.9、安装CRI
容器运行时采用containerd,最新安装步骤参照gayhub Editing containerd/getting-started.md at main · containerd/containerd (github.com)
Step 1: Installing containerd
Download the containerd-<VERSION>-<OS>-<ARCH>.tar.gz
archive from https://github.com/containerd/containerd/releases ,
verify its sha256sum, and extract it under /usr/local
:
$ tar Cxzvf /usr/local containerd-1.6.2-linux-amd64.tar.gz
bin/
bin/containerd-shim-runc-v2
bin/containerd-shim
bin/ctr
bin/containerd-shim-runc-v1
bin/containerd
bin/containerd-stress
The containerd
binary is built dynamically for glibc-based Linux distributions such as Ubuntu and Rocky Linux.
This binary may not work on musl-based distributions such as Alpine Linux.
Users of such distributions may have to install containerd from the source or a third party package.
FAQ: For Kubernetes, do I need to download
cri-containerd-(cni-)<VERSION>-<OS-<ARCH>.tar.gz
too?Answer: No.
As the Kubernetes CRI feature has been already included in
containerd-<VERSION>-<OS>-<ARCH>.tar.gz
,
you do not need to download thecri-containerd-....
archives to use CRI.The
cri-containerd-...
archives are deprecated,
do not work on old Linux distributions, and will be removed in containerd 2.0.
systemd
# Copyright The containerd Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
[Unit]
Description=containerd container runtime
Documentation=https://containerd.io
After=network.target local-fs.target
[Service]
#uncomment to enable the experimental sbservice (sandboxed) version of containerd/cri integration
#Environment="ENABLE_CRI_SANDBOXES=sandboxed"
ExecStartPre=-/sbin/modprobe overlay
ExecStart=/usr/local/bin/containerd
Type=notify
Delegate=yes
KillMode=process
Restart=always
RestartSec=5
# Having non-zero Limit*s causes performance problems due to accounting overhead
# in the kernel. We recommend using cgroups to do container-local accounting.
LimitNPROC=infinity
LimitCORE=infinity
LimitNOFILE=infinity
# Comment TasksMax if your systemd version does not supports it.
# Only systemd 226 and above support this version.
TasksMax=infinity
OOMScoreAdjust=-999
[Install]
WantedBy=multi-user.target
If you intend to start containerd via systemd, you should also download the containerd.service
unit file from
https://raw.githubusercontent.com/containerd/containerd/main/containerd.service into /usr/lib/systemd/system/containerd.service
,
and run the following commands:
systemctl daemon-reload
systemctl enable --now containerd
Step 2: Installing runc
Download the runc.<ARCH>
binary from https://github.com/opencontainers/runc/releases ,
verify its sha256sum, and install it as /usr/local/sbin/runc
.
$ install -m 755 runc.amd64 /usr/local/sbin/runc
The binary is built statically and should work on any Linux distribution.
Step 3: Installing CNI plugins
Download the cni-plugins-<OS>-<ARCH>-<VERSION>.tgz
archive from https://github.com/containernetworking/plugins/releases ,
verify its sha256sum, and extract it under /opt/cni/bin
:
$ mkdir -p /opt/cni/bin
$ tar Cxzvf /opt/cni/bin cni-plugins-linux-amd64-v1.1.1.tgz
./
./macvlan
./static
./vlan
./portmap
./host-local
./vrf
./bridge
./tuning
./firewall
./host-device
./sbr
./loopback
./dhcp
./ptp
./ipvlan
./bandwidth
The binaries are built statically and should work on any Linux distribution.
修改containerd的Cgroup为Systemd
mkdir /etc/containerd
# 导出默认配置文件
containerd config default > /etc/containerd/config.toml
修改config.toml
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]下添加SystemdCgroup = true
命令行直接替换
awk '/\[plugins\."io\.containerd\.grpc\.v1\.cri"\.containerd\.runtimes\.runc\.options\]/{f=1} f{gsub(/SystemdCgroup = false/,"SystemdCgroup = true")}1' /etc/containerd/config.toml > temp && mv temp /etc/containerd/config.toml
systemctl start containerd
2.0、PKI(公钥基础设施)
https://baike.baidu.com/item/%E5%85%AC%E9%92%A5%E5%9F%BA%E7%A1%80%E8%AE%BE%E6%96%BD/10881894
Kubernetes 需要 PKI 才能执行以下操作:
- Kubelet 的客户端证书,用于 API 服务器身份验证
- API 服务器端点的证书
- 集群管理员的客户端证书,用于 API 服务器身份认证
- API 服务器的客户端证书,用于和 Kubelet 的会话
- API 服务器的客户端证书,用于和 etcd 的会话
- 控制器管理器的客户端证书/kubeconfig,用于和 API 服务器的会话
- 调度器的客户端证书/kubeconfig,用于和 API 服务器的会话
- 前端代理 的客户端及服务端证书
说明: 只有当你运行 kube-proxy 并要支持 扩展 API 服务器 时,才需要
front-proxy
证书
etcd 还实现了双向 TLS 来对客户端和对其他对等节点进行身份验证
https://kubernetes.io/zh/docs/setup/best-practices/certificates/#集群是如何使用证书的
学习证书: https://www.cnblogs.com/technology178/p/14094375.html
2.0.1、ca根配置
ca-config.json
mkdir -p /etc/kubernetes/pki
cd /etc/kubernetes/pki
vi ca-config.json
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"server": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth"
]
},
"client": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"client auth"
]
},
"peer": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
},
"kubernetes": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
},
"etcd": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
2.0.2、ca签名请求
CSR是Certificate Signing Request的英文缩写,即证书签名请求文件
ca-csr.json
vi /etc/kubernetes/pki/ca-csr.json
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "Beijing",
"L": "Beijing",
"O": "Kubernetes",
"OU": "Kubernetes"
}
],
"ca": {
"expiry": "87600h"
}
}
- CN(Common Name):
- 公用名(Common Name)必须填写,一般可以是网站域
- O(Organization):
- Organization(组织名)是必须填写的,如果申请的是OV、EV型证书,组织名称必须严格和企业在政府登记名称一致,一般需要和营业执照上的名称完全一致。不可以使用缩写或者商标。如果需要使用英文名称,需要有DUNS编码或者律师信证明。
- OU(Organization Unit)
- OU单位部门,这里一般没有太多限制,可以直接填写IT DEPT等皆可。
- C(City)
- City是指申请单位所在的城市。
- ST(State/Province)
- ST是指申请单位所在的省份。
- C(Country Name)
- C是指国家名称,这里用的是两位大写的国家代码,中国是CN。
2.0.3、生成证书
生成ca证书和私钥
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
# ca.csr ca.pem(ca公钥) ca-key.pem(ca私钥,妥善保管)
2、etcd高可用搭建
下载etcd二进制文件,gayhub地址 https://github.com/etcd-io/etcd/releases/download/v3.5.5/etcd-v3.5.5-linux-amd64.tar.gz
解压并放置到/usr/local/bin下
tar -zxvf etcd-v3.5.5-linux-amd64.tar.gz --strip-components=1 -C /usr/local/bin etcd-v3.5.5-linux-amd64/etcd{,ctl}
验证
##验证
etcdctl #只要有打印就ok
2.1、etcd证书生成
etcd CA机构证书申请
/etc/kubernetes/pki/etcd/etcd-ca-csr.json
{
"CN": "etcd",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "Beijing",
"L": "Beijing",
"O": "etcd",
"OU": "etcd"
}
],
"ca": {
"expiry": "87600h"
}
}
生成etcd根证书
cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare /etc/kubernetes/pki/etcd/ca -
etcd 服务证书申请
/etc/kubernetes/pki/etcd/etcd-haoge-csr.json
{
"CN": "etcd-haoge",
"key": {
"algo": "rsa",
"size": 2048
},
"hosts": [
"127.0.0.1",
"k8s-master1",
"k8s-master2",
"k8s-master3",
"192.168.0.10",
"192.168.0.11",
"192.168.0.12"
],
"names": [
{
"C": "CN",
"L": "beijing",
"O": "etcd",
"ST": "beijing",
"OU": "System"
}
]
}
# 签发haoge的etcd证书
cfssl gencert \
-ca=/etc/kubernetes/pki/etcd/ca.pem \
-ca-key=/etc/kubernetes/pki/etcd/ca-key.pem \
-config=/etc/kubernetes/pki/ca-config.json \
-profile=etcd \
etcd-haoge-csr.json | cfssljson -bare /etc/kubernetes/pki/etcd/etcd
把生成的etcd等证书拷贝到其它两个master
2.2、安装
etcd/etcd.conf.yml.sample 配置文件模板
#三个master执行
mkdir /etc/etcd
# 写入下方etcd的配置
vim /etc/etcd/etcd.yaml
# This is the configuration file for the etcd server.
# Human-readable name for this member. #每个机器可以写自己的域名,不能重复
name: 'etcd-master1'
# Path to the data directory.
data-dir: /var/lib/etcd
# Path to the dedicated wal directory.
wal-dir: /var/lib/etcd/wal
# Number of committed transactions to trigger a snapshot to disk.
snapshot-count: 10000
# Time (in milliseconds) of a heartbeat interval.
heartbeat-interval: 100
# Time (in milliseconds) for an election to timeout.
election-timeout: 1000
# Raise alarms when backend size exceeds the given quota. 0 means use the
# default quota.
quota-backend-bytes: 0
# List of comma separated URLs to listen on for peer traffic. # 本机ip+2380端口,代表和集群通信
listen-peer-urls: https://10.104.0.2:2380
# List of comma separated URLs to listen on for client traffic.
listen-client-urls: https://10.104.0.2:2379
# Maximum number of snapshot files to retain (0 is unlimited).
max-snapshots: 5
# Maximum number of wal files to retain (0 is unlimited).
max-wals: 5
# Comma-separated white list of origins for CORS (cross-origin resource sharing).
cors:
# List of this member's peer URLs to advertise to the rest of the cluster.
# The URLs needed to be a comma-separated list.
initial-advertise-peer-urls: https://10.104.0.2:2380
# List of this member's client URLs to advertise to the public.
# The URLs needed to be a comma-separated list.
advertise-client-urls: http://10.104.0.2:2379
# Discovery URL used to bootstrap the cluster.
discovery:
# Valid values include 'exit', 'proxy'
discovery-fallback: 'proxy'
# HTTP proxy to use for traffic to discovery service.
discovery-proxy:
# DNS domain used to bootstrap initial cluster.
discovery-srv:
# Initial cluster configuration for bootstrapping.
initial-cluster: 'etcd-master1=https://10.104.0.2:2380,etcd-master2=https://10.104.0.3:2380,etcd-master3=https://10.104.0.4:2380'
# Initial cluster token for the etcd cluster during bootstrap.
initial-cluster-token: 'k8s-etcd-cluster'
# Initial cluster state ('new' or 'existing').
initial-cluster-state: 'new'
# Reject reconfiguration requests that would cause quorum loss.
strict-reconfig-check: false
# Enable runtime profiling data via HTTP server
enable-pprof: true
# Valid values include 'on', 'readonly', 'off'
proxy: 'off'
# Time (in milliseconds) an endpoint will be held in a failed state.
proxy-failure-wait: 5000
# Time (in milliseconds) of the endpoints refresh interval.
proxy-refresh-interval: 30000
# Time (in milliseconds) for a dial to timeout.
proxy-dial-timeout: 1000
# Time (in milliseconds) for a write to timeout.
proxy-write-timeout: 5000
# Time (in milliseconds) for a read to timeout.
proxy-read-timeout: 0
client-transport-security:
# Path to the client server TLS cert file.
cert-file: '/etc/kubernetes/pki/etcd/etcd.pem'
# Path to the client server TLS key file.
key-file: '/etc/kubernetes/pki/etcd/etcd-key.pem'
# Enable client cert authentication.
client-cert-auth: true
# Path to the client server TLS trusted CA cert file.
trusted-ca-file: '/etc/kubernetes/pki/etcd/ca.pem'
# Client TLS using generated certificates
auto-tls: true
peer-transport-security:
# Path to the peer server TLS cert file.
cert-file: '/etc/kubernetes/pki/etcd/etcd.pem'
# Path to the peer server TLS key file.
key-file: '/etc/kubernetes/pki/etcd/etcd-key.pem'
# Enable peer client cert authentication.
client-cert-auth: true
# Path to the peer server TLS trusted CA cert file.
trusted-ca-file: '/etc/kubernetes/pki/etcd/ca.pem'
# Peer TLS using generated certificates.
auto-tls: true
# The validity period of the self-signed certificate, the unit is year.
self-signed-cert-validity: 1
# Enable debug-level logging for etcd.
log-level: info
logger: zap
# Specify 'stdout' or 'stderr' to skip journald logging even when running under systemd.
log-outputs: [stderr]
# Force to create a new one member cluster.
force-new-cluster: false
auto-compaction-mode: periodic
auto-compaction-retention: "1"
⚠️⚠️:12月1号我从新部署遇见了问题,不知道是不是四处粘贴导致配置文件格式有所改变,如果以上配置文件启动etcd报错,去github上拉一份模板比对一下,大同小异的
etcd配置为service开机自启
vim /usr/lib/systemd/system/etcd.service
[Unit]
Description=Etcd Service
After=network.target
[Service]
Type=notify
ExecStart=/usr/local/bin/etcd --config-file=/etc/etcd/etcd.yaml
Restart=on-failure
RestartSec=10
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
Alias=etcd3.service
# 加载&开机启动
systemctl daemon-reload
systemctl enable --now etcd
测试etcd集群访问基础操作等
# 以后测试命令
export ETCDCTL_API=3
HOST_1=10.104.0.2
HOST_2=10.104.0.3
HOST_3=10.104.0.4
ENDPOINTS=$HOST_1:2379,$HOST_2:2379,$HOST_3:2379
## 导出环境变量,方便测试,参照https://github.com/etcd-io/etcd/tree/main/etcdctl
export ETCDCTL_DIAL_TIMEOUT=3s
export ETCDCTL_CACERT=/etc/kubernetes/pki/etcd/ca.pem
export ETCDCTL_CERT=/etc/kubernetes/pki/etcd/etcd.pem
export ETCDCTL_KEY=/etc/kubernetes/pki/etcd/etcd-key.pem
export ETCDCTL_ENDPOINTS=$HOST_1:2379,$HOST_2:2379,$HOST_3:2379
# 查看etcd集群成员列表
etcdctl member list --write-out=table
# 正常情况会打印出如下内容:
+------------------+---------+--------------+-------------------------+------------------------+------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS | IS LEARNER |
+------------------+---------+--------------+-------------------------+------------------------+------------+
| d29d1f583570329 | started | etcd-master3 | https://10.104.0.4:2380 | http://10.104.0.4:2379 | false |
| 6613f6d58c7b2ed7 | started | etcd-master2 | https://10.104.0.3:2380 | http://10.104.0.3:2379 | false |
| a5d86e795b652188 | started | etcd-master1 | https://10.104.0.2:2380 | http://10.104.0.2:2379 | false |
+------------------+---------+--------------+-------------------------+------------------------+------------+
# 也可进行简单的crud测试
# 存入一个key为hello值为world的键值对
etcdctl put hello 'world'
# 如果在别的master节点上可以获取到说明部署正常
etcdctl get hello
#如果没有环境变量就需要如下方式调用
etcdctl --endpoints=$ENDPOINTS --cacert=/etc/kubernetes/pki/etcd/ca.pem --cert=/etc/kubernetes/pki/etcd/etcd.pem --key=/etc/kubernetes/pki/etcd/etcd-key.pem member list --write-out=table
3、kubernetes安装
3.1、下载二进制文件
gayhub kubernetes/CHANGELOG-1.24.md at master · kubernetes/kubernetes (github.com)
生产环境建议使用小版本号大于5的,本次测试采用1.24.7
下载Server Binaries https://dl.k8s.io/v1.24.7/kubernetes-server-linux-amd64.tar.gz
解压并将二进制可执行文件放入所有节点的/usr/local/bin下,注意master和node节点所需要的组件不完全一样
# master
tar -xvf kubernetes-server-linux-amd64.tar.gz --strip-components=3 -C /usr/local/bin kubernetes/server/bin/kube{let,ctl,-apiserver,-controller-manager,-scheduler,-proxy}
# node 只需kubelet,kube-proxy
tar -xvf kubernetes-server-linux-amd64.tar.gz --strip-components=3 -C /usr/local/bin kubernetes/server/bin/kube{let,-proxy}
3.2、生成api-server所需证书
申请:apiserver-csr.json
// 10.96.0. 为service网段。可以自定义
// 10.104.0.9: 是负载均衡器地址(负载均衡可以自己搭建,也可以购买云厂商lb。)
{
"CN": "kube-apiserver",
"hosts": [
"10.96.0.1",
"127.0.0.1",
"10.104.0.9",
"10.104.0.2",
"10.104.0.3",
"10.104.0.4",
"10.104.0.5",
"10.104.0.6",
"10.104.0.7",
"10.104.0.8",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "Kubernetes",
"OU": "Kubernetes"
}
]
}
生成证书
# ⚠️注意没有生成根CA机构证书的用如下命令进行生成,前面已经生成过的就不用了
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
# 通过root ca来签名生成api-server的证书
cfssl gencert -ca=/etc/kubernetes/pki/ca.pem -ca-key=/etc/kubernetes/pki/ca-key.pem -config=/etc/kubernetes/pki/ca-config.json -profile=kubernetes apiserver-csr.json | cfssljson -bare /etc/kubernetes/pki/apiserver
3.3、front-proxy证书生成
https://kubernetes.io/zh/docs/tasks/extend-kubernetes/configure-aggregation-layer/
它是apiserver聚合层,后来支持CRD(自定义的资源文件)的,也就是yaml描述文件中的kind
apiVersion: xxx
kind: HelloDaChang — CRD — front-proxy
⚠️
注意:front-proxy不建议用新的CA机构签发证书,可能导致通过他代理的组件如metrics-server权限不可用。
如果用新的,api-server配置添加 --requestheader-allowed-names=front-proxy-client
3.3.1、front-proxy Root CA 申请
vim front-proxy-ca-csr.json
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
}
}
#front-proxy 根ca生成
cfssl gencert -initca front-proxy-ca-csr.json | cfssljson -bare /etc/kubernetes/pki/front-proxy-ca
3.3.2、front-proxy-client证书
vim front-proxy-client-csr.json
{
"CN": "front-proxy-client",
"key": {
"algo": "rsa",
"size": 2048
}
}
#生成front-proxy-client 证书
cfssl gencert -ca=/etc/kubernetes/pki/front-proxy-ca.pem -ca-key=/etc/kubernetes/pki/front-proxy-ca-key.pem -config=ca-config.json -profile=kubernetes front-proxy-client-csr.json | cfssljson -bare /etc/kubernetes/pki/front-proxy-client
#忽略警告,毕竟我们不是给网站生成的
3.4、controller-manager证书生成与配置
3.4.1、controller-manager-csr.json
vim controller-manager-csr.json
{
"CN": "system:kube-controller-manager",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "Beijing",
"L": "Beijing",
"O": "system:kube-controller-manager",
"OU": "Kubernetes"
}
]
}
3.4.2、生成证书
cfssl gencert \
-ca=/etc/kubernetes/pki/ca.pem \
-ca-key=/etc/kubernetes/pki/ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
controller-manager-csr.json | cfssljson -bare /etc/kubernetes/pki/controller-manager
3.4.3、生成controller-manager.conf
# 注意,如果不是高可用集群,10.104.0.9:6443改为master1的地址,6443为apiserver的默认端口
# set-cluster:设置一个集群项,
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=https://10.104.0.9:6443 \
--kubeconfig=/etc/kubernetes/controller-manager.conf
# 设置一个环境项,一个上下文
kubectl config set-context system:kube-controller-manager@kubernetes \
--cluster=kubernetes \
--user=system:kube-controller-manager \
--kubeconfig=/etc/kubernetes/controller-manager.conf
# set-credentials 设置一个用户项
kubectl config set-credentials system:kube-controller-manager \
--client-certificate=/etc/kubernetes/pki/controller-manager.pem \
--client-key=/etc/kubernetes/pki/controller-manager-key.pem \
--embed-certs=true \
--kubeconfig=/etc/kubernetes/controller-manager.conf
# 使用某个环境当做默认环境
kubectl config use-context system:kube-controller-manager@kubernetes \
--kubeconfig=/etc/kubernetes/controller-manager.conf
# 后来也用来自动批复kubelet证书
3.5、scheduler证书生成与配置
3.5.1、scheduler-csr.json
vim scheduler-csr.json
{
"CN": "system:kube-scheduler",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "Beijing",
"L": "Beijing",
"O": "system:kube-scheduler",
"OU": "Kubernetes"
}
]
}
3.5.2、签发证书
cfssl gencert \
-ca=/etc/kubernetes/pki/ca.pem \
-ca-key=/etc/kubernetes/pki/ca-key.pem \
-config=/etc/kubernetes/pki/ca-config.json \
-profile=kubernetes \
scheduler-csr.json | cfssljson -bare /etc/kubernetes/pki/scheduler
3.5.3 配置scheduler.conf
# 注意,如果不是高可用集群,10.104.0.9:6443改为master1的地址,6443为apiserver的默认端口
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=https://10.104.0.9:6443 \
--kubeconfig=/etc/kubernetes/scheduler.conf
kubectl config set-credentials system:kube-scheduler \
--client-certificate=/etc/kubernetes/pki/scheduler.pem \
--client-key=/etc/kubernetes/pki/scheduler-key.pem \
--embed-certs=true \
--kubeconfig=/etc/kubernetes/scheduler.conf
kubectl config set-context system:kube-scheduler@kubernetes \
--cluster=kubernetes \
--user=system:kube-scheduler \
--kubeconfig=/etc/kubernetes/scheduler.conf
kubectl config use-context system:kube-scheduler@kubernetes \
--kubeconfig=/etc/kubernetes/scheduler.conf
3.6、admin证书生成与配置
3.6.1、admin-csr.json
vim admin-csr.json
{
"CN": "admin",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "Beijing",
"L": "Beijing",
"O": "system:masters",
"OU": "Kubernetes"
}
]
}
3.6.2、生成证书
cfssl gencert \
-ca=/etc/kubernetes/pki/ca.pem \
-ca-key=/etc/kubernetes/pki/ca-key.pem \
-config=/etc/kubernetes/pki/ca-config.json \
-profile=kubernetes \
admin-csr.json | cfssljson -bare /etc/kubernetes/pki/admin
3.6.3、生成admin.conf
# 注意,如果不是高可用集群,10.104.0.9:6443改为master01的地址,6443为apiserver的默认端口
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=https://10.104.0.9:6443 \
--kubeconfig=/etc/kubernetes/admin.conf
kubectl config set-credentials kubernetes-admin \
--client-certificate=/etc/kubernetes/pki/admin.pem \
--client-key=/etc/kubernetes/pki/admin-key.pem \
--embed-certs=true \
--kubeconfig=/etc/kubernetes/admin.conf
kubectl config set-context kubernetes-admin@kubernetes \
--cluster=kubernetes \
--user=kubernetes-admin \
--kubeconfig=/etc/kubernetes/admin.conf
kubectl config use-context kubernetes-admin@kubernetes \
--kubeconfig=/etc/kubernetes/admin.conf
⚠️⚠️
kubelet将使用 bootstrap 引导机制,自动颁发证书,所以我们不用配置
3.7、ServiceAccount Key生成
k8s底层,每创建一个ServiceAccount,都会分配一个Secret,而Secret里面有秘钥,秘钥就是由我们接下来的sa生成的。所以我们提前创建出sa信息
openssl genrsa -out /etc/kubernetes/pki/sa.key 2048
openssl rsa -in /etc/kubernetes/pki/sa.key -pubout -out /etc/kubernetes/pki/sa.pub
⚠️⚠️⚠️⚠️
最后将上面生成的所有证书配置拷贝到其它两个master
/etc/kubernetes中内容
4、kubernetes组件启动
4.1、必要的目录创建
mkdir -p /etc/kubernetes/manifests/ /etc/systemd/system/kubelet.service.d /var/lib/kubelet /var/log/kubernetes
4.2、配置apiserver服务
vim /usr/lib/systemd/system/kube-apiserver.service
# 每个master节点都需要执行以下内容
# --advertise-address: 需要改为本master节点的ip
# --service-cluster-ip-range=10.96.0.0/16: 需要改为自己规划的service网段
# --etcd-servers: 改为自己etcd-server的所有地址
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
ExecStart=/usr/local/bin/kube-apiserver \
--v=2 \
--allow-privileged=true \
--bind-address=0.0.0.0 \
--secure-port=6443 \
--advertise-address=10.104.0.2 \
--service-cluster-ip-range=10.96.0.0/16 \
--service-node-port-range=30000-32767 \
--etcd-servers=https://10.104.0.2:2379,https://10.104.0.3:2379,https://10.104.0.4:2379 \
--etcd-cafile=/etc/kubernetes/pki/etcd/ca.pem \
--etcd-certfile=/etc/kubernetes/pki/etcd/etcd.pem \
--etcd-keyfile=/etc/kubernetes/pki/etcd/etcd-key.pem \
--client-ca-file=/etc/kubernetes/pki/ca.pem \
--tls-cert-file=/etc/kubernetes/pki/apiserver.pem \
--tls-private-key-file=/etc/kubernetes/pki/apiserver-key.pem \
--kubelet-client-certificate=/etc/kubernetes/pki/apiserver.pem \
--kubelet-client-key=/etc/kubernetes/pki/apiserver-key.pem \
--service-account-key-file=/etc/kubernetes/pki/sa.pub \
--service-account-signing-key-file=/etc/kubernetes/pki/sa.key \
--service-account-issuer=https://kubernetes.default.svc.cluster.local \
--kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname \
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,NodeRestriction,ResourceQuota \
--authorization-mode=Node,RBAC \
--enable-bootstrap-token-auth=true \
--requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.pem \
--proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.pem \
--proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client-key.pem \
--requestheader-allowed-names=aggregator,front-proxy-client \
--requestheader-group-headers=X-Remote-Group \
--requestheader-extra-headers-prefix=X-Remote-Extra- \
--requestheader-username-headers=X-Remote-User
# --token-auth-file=/etc/kubernetes/token.csv
Restart=on-failure
RestartSec=10s
LimitNOFILE=65535
[Install]
WantedBy=multi-user.target
4.3、启动apiserver服务
systemctl daemon-reload && systemctl enable --now kube-apiserver
#查看状态
systemctl status kube-apiserver
4.4、controller-manager服务
# 所有节点执行
vim /usr/lib/systemd/system/kube-controller-manager.service
文档使用的k8s Pod网段为196.16.0.0/16
,该网段不能和宿主机的网段、k8s Service网段的重复,请按需修改;
特别注意:docker的网桥默认为 172.17.0.1/16
。不要使用这个网段
## --cluster-cidr=196.16.0.0/16 : 为Pod的网段。修改成自己想规划的网段
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
ExecStart=/usr/local/bin/kube-controller-manager \
--v=2 \
--logtostderr=true \
--root-ca-file=/etc/kubernetes/pki/ca.pem \
--cluster-signing-cert-file=/etc/kubernetes/pki/ca.pem \
--cluster-signing-key-file=/etc/kubernetes/pki/ca-key.pem \
--service-account-private-key-file=/etc/kubernetes/pki/sa.key \
--kubeconfig=/etc/kubernetes/controller-manager.conf \
--leader-elect=true \
--use-service-account-credentials=true \
--node-monitor-grace-period=40s \
--node-monitor-period=5s \
--pod-eviction-timeout=2m0s \
--controllers=*,bootstrapsigner,tokencleaner \
--allocate-node-cidrs=true \
--cluster-cidr=196.16.0.0/16 \
--requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.pem \
--node-cidr-mask-size=24
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
# 启动服务
systemctl daemon-reload && systemctl enable --now kube-controller-manager
systemctl status kube-controller-manager
4.5、配置scheduler
vim /usr/lib/systemd/system/kube-scheduler.service
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
ExecStart=/usr/local/bin/kube-scheduler \
--v=2 \
--logtostderr=true \
--leader-elect=true \
--kubeconfig=/etc/kubernetes/scheduler.conf
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
# 启动
systemctl daemon-reload && systemctl enable --now kube-scheduler
systemctl status kube-scheduler
5、TLS与引导启动原理
5.1、master1配置bootstrap
#准备一个随机token。但是我们只需要16个字符
head -c 16 /dev/urandom | od -An -t x | tr -d ' '
# 值如下: 642650cf69763fb7d0d0e89e8d8737b8
# 生成16个字符的
head -c 8 /dev/urandom | od -An -t x | tr -d ' '
# 1ebba4a515949ccb
#设置集群
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=https://10.104.0.9:6443 \
--kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf
#设置秘钥
kubectl config set-credentials tls-bootstrap-token-user \
--token=123c62.1ebba4a515949ccb \
--kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf
#设置上下文
kubectl config set-context tls-bootstrap-token-user@kubernetes \
--cluster=kubernetes \
--user=tls-bootstrap-token-user \
--kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf
#使用设置
kubectl config use-context tls-bootstrap-token-user@kubernetes \
--kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf
5.2、master1设置kubectl执行权限
kubectl 能不能操作集群是看 /root/.kube 下有没有config文件,而config就是我们之前生成的admin.conf,具有操作权限的
# 只在master1生成,因为生产集群,我们只能让一台机器具有操作集群的权限,这样好控制
mkdir -p /root/.kube ;
cp /etc/kubernetes/admin.conf /root/.kube/config
#验证
kubectl get nodes
# 应该在网络里面开放负载均衡器的6443端口;默认应该不要配置的
[root@k8s-master1 ~]# kubectl get nodes
No resources found
#说明已经可以连接apiserver并获取资源
5.3、创建集群引导权限文件
# master准备这个文件
vim /etc/kubernetes/bootstrap.secret.yaml
apiVersion: v1
kind: Secret
metadata:
name: bootstrap-token-123c62
namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
description: "The default bootstrap token generated by 'kubelet '."
token-id: 123c62
token-secret: 1ebba4a515949ccb
usage-bootstrap-authentication: "true"
usage-bootstrap-signing: "true"
auth-extra-groups: system:bootstrappers:default-node-token,system:bootstrappers:worker,system:bootstrappers:ingress
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kubelet-bootstrap
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:node-bootstrapper
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:bootstrappers:default-node-token
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: node-autoapprove-bootstrap
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:certificates.k8s.io:certificatesigningrequests:nodeclient
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:bootstrappers:default-node-token
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: node-autoapprove-certificate-rotation
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:certificates.k8s.io:certificatesigningrequests:selfnodeclient
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:nodes
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:kube-apiserver-to-kubelet
rules:
- apiGroups:
- ""
resources:
- nodes/proxy
- nodes/stats
- nodes/log
- nodes/spec
- nodes/metrics
verbs:
- "*"
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: system:kube-apiserver
namespace: ""
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:kube-apiserver-to-kubelet
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: kube-apiserver
# 应用此文件资源内容
kubectl create -f /etc/kubernetes/bootstrap.secret.yaml
5.4、引导Node节点启动
拷贝核心证书到其它节点
# /etc/kubernetes/pki/etcd下的
ca.pem etcd.pem etcd-key.pem
# /etc/kubernetes/ 下的
pki/ca.pem pki/ca-key.pem pki/front-proxy-ca.pem bootstrap-kubelet.conf
创建相关目录
# 所有节点创建相关目录
mkdir -p /var/lib/kubelet /var/log/kubernetes /etc/systemd/system/kubelet.service.d /etc/kubernetes/manifests/
5.4.1、创建kubelet.service
#所有节点,配置kubelet服务
vim /usr/lib/systemd/system/kubelet.service
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=containerd.service
Requires=containerd.service
[Service]
ExecStart=/usr/local/bin/kubelet
Restart=always
StartLimitInterval=0
RestartSec=10
[Install]
WantedBy=multi-user.target
# 所有节点配置kubelet service配置文件
vim /etc/systemd/system/kubelet.service.d/10-kubelet.conf
[Service]
Environment="KUBELET_KUBECONFIG_ARGS=--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --kubeconfig=/etc/kubernetes/kubelet.conf"
Environment="KUBELET_SYSTEM_ARGS=--container-runtime-endpoint=/run/containerd/containerd.sock"
Environment="KUBELET_CONFIG_ARGS=--config=/etc/kubernetes/kubelet-conf.yml --pod-infra-container-image=registry.k8s.io/pause:3.6"
Environment="KUBELET_EXTRA_ARGS=--node-labels=node.kubernetes.io/node='' "
# 这个不是写错了,请注意
ExecStart=
ExecStart=/usr/local/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_SYSTEM_ARGS $KUBELET_EXTRA_ARGS
5.4.2、创建kubelet-conf.yml文件
#所有节点,配置kubelet-conf文件
vim /etc/kubernetes/kubelet-conf.yml
apiVersion: kubelet.config.k8s.io/v1beta1
kind: KubeletConfiguration
address: 0.0.0.0
port: 10250
readOnlyPort: 10255
authentication:
anonymous:
enabled: false
webhook:
cacheTTL: 2m0s
enabled: true
x509:
clientCAFile: /etc/kubernetes/pki/ca.pem
authorization:
mode: Webhook
webhook:
cacheAuthorizedTTL: 5m0s
cacheUnauthorizedTTL: 30s
cgroupDriver: systemd
cgroupsPerQOS: true
clusterDNS:
- 10.96.0.10
clusterDomain: cluster.local
containerLogMaxFiles: 5
containerLogMaxSize: 10Mi
contentType: application/vnd.kubernetes.protobuf
cpuCFSQuota: true
cpuManagerPolicy: none
cpuManagerReconcilePeriod: 10s
enableControllerAttachDetach: true
enableDebuggingHandlers: true
enforceNodeAllocatable:
- pods
eventBurst: 10
eventRecordQPS: 5
evictionHard:
imagefs.available: 15%
memory.available: 100Mi
nodefs.available: 10%
nodefs.inodesFree: 5%
evictionPressureTransitionPeriod: 5m0s #缩小相应的配置
failSwapOn: true
fileCheckFrequency: 20s
hairpinMode: promiscuous-bridge
healthzBindAddress: 127.0.0.1
healthzPort: 10248
httpCheckFrequency: 20s
imageGCHighThresholdPercent: 85
imageGCLowThresholdPercent: 80
imageMinimumGCAge: 2m0s
iptablesDropBit: 15
iptablesMasqueradeBit: 14
kubeAPIBurst: 10
kubeAPIQPS: 5
makeIPTablesUtilChains: true
maxOpenFiles: 1000000
maxPods: 110
nodeStatusUpdateFrequency: 10s
oomScoreAdj: -999
podPidsLimit: -1
registryBurst: 10
registryPullQPS: 5
resolvConf: /etc/resolv.conf
rotateCertificates: true
runtimeRequestTimeout: 2m0s
serializeImagePulls: true
staticPodPath: /etc/kubernetes/manifests
streamingConnectionIdleTimeout: 4h0m0s
syncFrequency: 1m0s
volumeStatsAggPeriod: 1m0s
5.4.3、所有节点启动kubelet
systemctl daemon-reload && systemctl enable --now kubelet
systemctl status kubelet
会提示 “Unable to update cni config”。
接下来配置cni网络即可
5.5、kube-proxy配置
5.5.1、生成kube-proxy.conf
单独一个master下进行配置
#创建kube-proxy的sa
kubectl -n kube-system create serviceaccount kube-proxy
#创建角色绑定
kubectl create clusterrolebinding system:kube-proxy \
--clusterrole system:node-proxier \
--serviceaccount kube-system:kube-proxy
#创建kube-proxy的secret
kubectl apply -n kube-system -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
name: kube-proxy-secret
annotations:
kubernetes.io/service-account.name: kube-proxy
type: kubernetes.io/service-account-token
EOF
#导出变量,方便后面使用
#SECRET=$(kubectl -n kube-system get sa/kube-proxy --output=jsonpath='{.secrets[0].name}')
JWT_TOKEN=$(kubectl -n kube-system get secret/kube-proxy-secret --output=jsonpath='{.data.token}' | base64 -d)
PKI_DIR=/etc/kubernetes/pki
K8S_DIR=/etc/kubernetes
# 生成kube-proxy配置
# --server: 指定自己的apiserver地址或者lb地址
kubectl config set-cluster kubernetes \
--certificate-authority=/etc/kubernetes/pki/ca.pem \
--embed-certs=true \
--server=https://10.104.0.9:6443 \
--kubeconfig=${K8S_DIR}/kube-proxy.conf
# kube-proxy秘钥设置
kubectl config set-credentials kubernetes \
--token=${JWT_TOKEN} \
--kubeconfig=/etc/kubernetes/kube-proxy.conf
kubectl config set-context kubernetes \
--cluster=kubernetes \
--user=kubernetes \
--kubeconfig=/etc/kubernetes/kube-proxy.conf
kubectl config use-context kubernetes \
--kubeconfig=/etc/kubernetes/kube-proxy.conf
/etc/kubernetes/kube-proxy.conf拷贝至其它节点
5.5.2、配置kube-proxy.service
# 所有节点配置 kube-proxy.service 服务,一会儿设置为开机启动
vim /usr/lib/systemd/system/kube-proxy.service
[Unit]
Description=Kubernetes Kube Proxy
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
ExecStart=/usr/local/bin/kube-proxy \
--config=/etc/kubernetes/kube-proxy.yaml \
--v=2
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
5.5.3、准备kube-proxy.yaml
# 所有机器执行
vim /etc/kubernetes/kube-proxy.yaml
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 0.0.0.0
clientConnection:
acceptContentTypes: ""
burst: 10
contentType: application/vnd.kubernetes.protobuf
kubeconfig: /etc/kubernetes/kube-proxy.conf #kube-proxy引导文件
qps: 5
clusterCIDR: 196.16.0.0/16 #修改为自己的Pod-CIDR
configSyncPeriod: 15m0s
conntrack:
#max: null
maxPerCore: 32768
min: 131072
tcpCloseWaitTimeout: 1h0m0s
tcpEstablishedTimeout: 24h0m0s
enableProfiling: false
healthzBindAddress: 0.0.0.0:10256
hostnameOverride: ""
iptables:
masqueradeAll: false
masqueradeBit: 14
minSyncPeriod: 0s
syncPeriod: 30s
ipvs:
#masqueradeAll: true
minSyncPeriod: 5s
scheduler: "rr"
syncPeriod: 30s
kind: KubeProxyConfiguration
metricsBindAddress: 127.0.0.1:10249
mode: "ipvs"
nodePortAddresses: null
oomScoreAdj: -999
portRange: ""
udpIdleTimeout: 250ms
# 启动kube-proxy
systemctl daemon-reload && systemctl enable --now kube-proxy
systemctl status kube-proxy
6、部署calico网络组件
一个master节点下操作就行了
# 下载官网calico
curl https://docs.projectcalico.org/manifests/calico-etcd.yaml -o calico.yaml
# 修改一些我们自定义的. 修改etcd集群地址
sed -i 's#etcd_endpoints: "http://<ETCD_IP>:<ETCD_PORT>"#etcd_endpoints: "https://10.104.0.2:2379,https://10.104.0.3:2379,https://10.104.0.4:2379"#g' calico.yaml
# etcd的证书内容,需要base64编码设置到yaml中
ETCD_CA=`cat /etc/kubernetes/pki/etcd/ca.pem | base64 -w 0 `
ETCD_CERT=`cat /etc/kubernetes/pki/etcd/etcd.pem | base64 -w 0 `
ETCD_KEY=`cat /etc/kubernetes/pki/etcd/etcd-key.pem | base64 -w 0 `
# 替换etcd中的证书base64编码后的内容
sed -i "s@# etcd-key: null@etcd-key: ${ETCD_KEY}@g; s@# etcd-cert: null@etcd-cert: ${ETCD_CERT}@g; s@# etcd-ca: null@etcd-ca: ${ETCD_CA}@g" calico.yaml
#打开 etcd_ca 等默认设置(calico启动后自己生成)。
sed -i 's#etcd_ca: ""#etcd_ca: "/calico-secrets/etcd-ca"#g; s#etcd_cert: ""#etcd_cert: "/calico-secrets/etcd-cert"#g; s#etcd_key: "" #etcd_key: "/calico-secrets/etcd-key" #g' calico.yaml
# 修改自己的Pod网段 196.16.0.0/16
POD_SUBNET="196.16.0.0/16"
sed -i 's@# - name: CALICO_IPV4POOL_CIDR@- name: CALICO_IPV4POOL_CIDR@g; s@# value: "192.168.0.0/16"@ value: '"${POD_SUBNET}"'@g' calico.yaml
# 一定确定自己是否修改好了
#确认calico是否修改好
grep "CALICO_IPV4POOL_CIDR" calico.yaml -A 1
# 应用calico配置
kubectl apply -f calico.yaml
7、部署coreDNS
git clone https://github.com/coredns/deployment.git
cd deployment/kubernetes
#10.96.0.10 改为 service 网段的 第 10 个ip
./deploy.sh -s -i 10.96.0.10 | kubectl apply -f -
⚠️⚠️⚠️⚠️⚠️⚠️⚠️⚠️⚠️⚠️⚠️
注意奥:有防火墙的请放行你给pod所分配的网段,否则coredns pod都不会就绪,具体就是查看日志会有503的错误提示
ufw allow from 196.16.0.0/16
⚠️⚠️⚠️⚠️⚠️⚠️⚠️⚠️⚠️⚠️⚠️
8、给节点打标签
master1打上污点使pod不调度到其上面
kubectl label node k8s-master1 node-role.kubernetes.io/master=''
kubectl label node k8s-master2 node-role.kubernetes.io/master=''
kubectl label node k8s-master3 node-role.kubernetes.io/master=''
# master1打上污点
kubectl taint nodes k8s-master1 node-role.kubernetes.io/master=:NoSchedule
9、集群验证
- 验证Pod网络可访问性
- 同名称空间,不同名称空间可以使用 ip 互相访问
- 跨机器部署的Pod也可以互相访问
- 验证Service网络可访问性
- 集群机器使用serviceIp可以负载均衡访问
- pod内部可以访问service域名 serviceName.namespace
- pod可以访问跨名称空间的service
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-01
namespace: default
labels:
app: nginx-01
spec:
selector:
matchLabels:
app: nginx-01
replicas: 1
template:
metadata:
labels:
app: nginx-01
spec:
containers:
- name: nginx-01
image: nginx
---
apiVersion: v1
kind: Service
metadata:
name: nginx-svc
namespace: default
spec:
selector:
app: nginx-01
type: ClusterIP
ports:
- name: nginx-svc
port: 80
targetPort: 80
protocol: TCP
---
apiVersion: v1
kind: Namespace
metadata:
name: hello
spec: {}
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-hello
namespace: hello
labels:
app: nginx-hello
spec:
selector:
matchLabels:
app: nginx-hello
replicas: 1
template:
metadata:
labels:
app: nginx-hello
spec:
containers:
- name: nginx-hello
image: nginx
---
apiVersion: v1
kind: Service
metadata:
name: nginx-svc-hello
namespace: hello
spec:
selector:
app: nginx-hello
type: ClusterIP
ports:
- name: nginx-svc-hello
port: 80
targetPort: 80
protocol: TCP